Pedestrian Path Prediction with Recursive Bayesian Filters: A Comparative Study

نویسندگان

  • Nicolas Schneider
  • Dariu Gavrila
چکیده

In the context of intelligent vehicles, we perform a comparative study on recursive Bayesian filters for pedestrian path prediction at short time horizons (< 2s). We consider Extended Kalman Filters (EKF) based on single dynamical models and Interacting Multiple Models (IMM) combining several such basic models (constant velocity/acceleration/turn). These are applied to four typical pedestrian motion types (crossing, stopping, bending in, starting). Position measurements are provided by an external state-of-the-art stereo vision-based pedestrian detector. We investigate the accuracy of position estimation and path prediction, and the benefit of the IMMs vs. the simpler single dynamical models. Special care is given to the proper sensor modeling and parameter optimization. The dataset and evaluation framework are made public to facilitate benchmarking.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Stochastic Path Planning Models from Video Images

We describe a probabilistic framework for learning models of pedestrian trajectories in general outdoor scenes. Possible applications include simulation of motion in computer graphics, video surveillance, and architectural design and analysis. The models are based on a combination of Kalman filters and stochastic path-planning via landmarks, where the landmarks are learned from the data. A dyna...

متن کامل

Context-Based Pedestrian Path Prediction

We present a novel Dynamic Bayesian Network for pedestrian path prediction in the intelligent vehicle domain. The model incorporates the pedestrian situational awareness, situation criticality and spatial layout of the environment as latent states on top of a Switching Linear Dynamical System (SLDS) to anticipate changes in the pedestrian dynamics. Using computer vision, situational awareness i...

متن کامل

Pedestrian Behavior Understanding and Prediction with Deep Neural Networks

In this paper, a deep neural network (Behavior-CNN) is proposed to model pedestrian behaviors in crowded scenes, which has many applications in surveillance. A pedestrian behavior encoding scheme is designed to provide a general representation of walking paths, which can be used as the input and output of CNN. The proposed Behavior-CNN is trained with real-scene crowd data and then thoroughly i...

متن کامل

A Novel Reference Current Calculation Method for Shunt Active Power Filters using a Recursive Algebraic Approach

This paper presents a novel method to calculate the reference source current and the referencecompensating current for shunt active power filters (SAPFs). This method first calculates theamplitude and phase of the fundamental load current from a recursive algebraic approach blockbefore calculating the displacement power factor. Next, the amplitude of the reference mains currentis computed with ...

متن کامل

Recursive Bayesian Estimation Navigation and Tracking Applications

Recursive estimation deals with the problem of extracting information about parameters, or states, of a dynamical system in real time, given noisy measurements of the system output. Recursive estimation plays a central role in many applications of signal processing, system identification and automatic control. In this thesis we study nonlinear and non-Gaussian recursive estimation problems in d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013